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PREFACE

This Report represents the culmination of an effort begun several

years ago. The United States Air worce was examining the feasibility

of alternative systems of missile basing, and became interested in accu-

rately calculating the pressures and motions following a nuclear burst

in or near water. Such calcuiations are necessary to establish esti-

mates of damage to nearby structures.

The material in the Report is highly technical, and is basic to

an understanding of the physical behavior of water at high temperatures

and pressures. The results presented should have lasting utility, not

only for their original purpose of damage assessment, but in a wide

variety of applications.

This Report is the t1hLrd and last in a series that documents re-

sults on the determination of thermodynamic relations for water; the

others are RH-4969 and RM-5050.

lr



The BKW equation is an empirical relation for the pressure-volume-

temperature equation of state of a nonideal mixture of gases. This

equation and some of its numerous modifications have been used as a

basis for determining thermodynamic relationships for gaseous mixtures

at high pressures and densities. In this Report, we test the BKW equa-

tion and some of its recent modifications for use in determining a set

of thermodynamic relations for water over a wide range of pressures,

temperatures, and densities. On the basis of the results of these

tests, we propose a further group of modifications that would provide

improved thermodynamic relations for use in calculations simulating

nuclear bursts in or near water.

We test our various proposed modifications, and recommend one of

then on the basis of our results. Finally, we calculate a pressure-

specific volume-i.ternal energy relation, based on our modified form

of the BIGJ equation, that can be used above approximately 300 kilobars.

The detailed results of the study are summarized on pp. 50-52 of

this Report.
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SYNDOLS

A - Helmholz free energy of mixture

c - number of species in mixture

W, E - internal energy of mixture

F - Gibbs free energy of mixture

H - enthalpy of mixture

h - specific enthalpy

M - mass of one gram-aol of water

n - total mols of mixtureS

S- mole of the ith component in mixture

p - pressure

p0  standard state pressure (1 atm)

pO - pressure at center point of the Hugoniot (1 atm)

R molar gas constant

r - distance between centers of two molecules

S - entropy of mixture

T - temperature

T - 298.16"K
0

V - total volume - M v0

V0  - total volume of mixture at pressure p 0 Vo n 9RT/pO

v - specific volume

xi a m"ol fraction of Ith species

yl - mols of atomic hydrogen

Y2 m sole of atomic oxygen

Y3 mols of electrons
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S- chemical potential of j h species in mixture

vii - stoichiometric coefficient of jth species in Ith reaction

# - Intermolecular potential

Superscripts

- differentiation; e.g., K'(T) - dK/dT

"- = molar quantity

o - material at temperature T in its standard state (ideal
gas at 1 atm)

* - a residual (imperfection) contribution to a thermodynamic
quantity (except for T*)

Subscripts

o - ambient conditions - liquid water at 298.16' and 1 atm

th ti, J, k - index representing (i,j,k) reaction, or (i,J,k)th
species



I. INTRODUCTION

The material presented here represents results from a portion

of the studies that have been directed toward the development of equa-

tions of state of water suitable for high-energy and hydrodynamic com-

putations. In this report, we review current forms of the BKW equation

of state (discussed in the following section) and recomuend some modi-

fications of its currently accepted form. We also test both the exist-

ing BKW equation and our modified versions for their suitability in

hydrodynamic computations over a wide range of pressures and temperatures.

Although these results were obtained some time ago, they are still rele-

vant to the major unsolved problem of obtaining the equations of state

needed to theoretically predict the motions and stresses following a

nuclear burst in water. Results based on the studies presented here

cover a significant portion of the entire pressure and temperature

rang* needed in such computations. A recommended set of equations

covering the entire range of interest and containing the results of

this study will be published in the near future.
The following investigation is based on the thermochemical pro-

gram developed in Ref. 1. Using the general outline of that reference,

we divided the pressure-volume plane into a series of distinct regions,

shown in Fig. 1. In the highest-pressure region, we used the equation-

of-state results of A. Latter and R. Latter based on the Thomas-Fermi

method. Below the Thomas-Fermi region, the H2 0 molecule has decomposed
into the twenty-three species of Table 1, which are assumed to be in

chemical equilibrium for temperatures above 5000*K (Region I of Fig. 1).

Calculations using the BKW equation of state have shown that more than

99 mol percent of the mixture consists of six species (H, 0, H2, 02,

H2 0, and OH) at temperatures of 5000*K and 7000"K. Therefore, in Re-
gion II of Fig. 1, only these six species are assumed to exist. Below

2000'K (Region III), BKW calculations show that the H 20 molecules re-

main essentially intact. Thus the 2000"K isotherm is established as

the lower boundary of Region II. Regions I and II cover the greatest

portion of the pressure-volume plane over which the BKW equation of

state will be modified and tested to determine thermodynamic relations
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Region I (23 species)

Iohr, -5000 O K

-- i Ifor BKW equation4Ii - i
0. .. Region 11 (6 species)

0. 5 H
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II I for BKW equation
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Fig. i]-Approximate regions of the BKW equilibium studies. All values
Shown of the sketch are approximate. Isotherms and Hugoniot shown

are illustrative only.



L

-. ,"r"-,,~-

-3--

Table 1

SPECIES AND REACTIONS FOR THE CHEMICAL EQUILIBRIUM PROBLEM IN WATER

Species Reaction
Number Species Number Reaction

1+ 1 0 -o+k
22 2 0 0+2 + 20

3 0+3 3 o 6+3 + 3e

4 0+4 4 0-o+4+

5 o+5 5 0 - 0+5 + 5,

6 o+ 6 0-o0+6( 6

7 o+7 7 o - 0' 7 + 70
a 0'.8 8 0 - eao +s+8

9 +9 H- +.
10 0 2 10 20 - 0O2

11 + 11 20 - 0 + +

12 H2  12 2H - H2

13 H2+ 13 2 2 = H + +

14 H20 14 2H + 0 - H20

15 OH 15 0+H-OH

16 OH- 16 0 + H + e -OH"

17 OH+ 17 0 +H - OH++ 0

18 0 18 0+a-0

19 H" 19 H + a - H-

20 02 20 20 02 + 2.

21 H

22 0

23 e

Source: Ref. 1.
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for water. The various species which may occur in Region I are shown
in Table 1. Stoichiometric coefficients for reactions among the species

of Table 1 are shown in Tables 2 and 3. The upper limit on Region I is

roughly established at 20 megabars, corresponding to our estimate of the

lower limit of validity of the Thomas-Fermi calculations of A. Latter

and R. Latter(2) for H120 at extreme pressures.

The reasons for terminating the low-pressure results of Latter and

Latter are indicated in Fig. 2, which contains the Hugoniot results of

Ref. 2 at the high pressures and experimental Hugoniot points at the

lower pressures. (3,4) At pressures below roughly 20 megabars, the

Thomas-Fermi model shows a tendency to predict pressures which are too
high. This deviation of the Hugoniot is consistent with the oft-repeated

statement that the Thomas-Fermi model should not be used below a pressure

of approximately 10 megabars.(5,6) Since this comment applies to the

heavier elements, which more generally satisfy the assumption of a

Thomas-Fermi analysis than the H 20 molecule, the apparent deviations

of Fig. 2 are not surprising. (At a temperature of 298*K and a volume

of 1 cm3 /gi, which correspond to normal liquid-water conditions, the

Thomas-Fermi model predicts a pressure of approximately 350 kilobars.)

Rice and Walsh(4) have developed an equation of state of water to 250

kilobars which is applicable to a region near the Hugoniot, and Walker

and Sternberg(7) have constructed a pressure-volume-energy equation

for water in the region bounded on the left in a p-v diagram by the

Hugoniot and on the right by the adiabat which intersects the Hugo-

niot at 250 kilobars. A p-v-T relation to 1 megabar and 10,000C has

been developed by Howard.(8) These investigations cover only a small

portion of the region over which we are seeking equilibrium solutions.

To our knowledge, the investigations of Snay and coworkerst represent
the most systematic attempt to obtain equilibrium relations for water

in the regions of Fig. 1.

The principal analytical tool used in their investigations, the

Becker-Kistiakowsky-Wilson (BKW) t equation, has since been modified

t See Refs. 9, 10, 11, and 12.

tt This same relation is often referred to as the Halford-Kistia-

kowsky-Wilson (HKW) equation.
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Table 2

SMOCicMuTIC COUTICIINS (vu) IFOR RUAMTIRS OF REGION I

1 2 3 4 5 6 7 8 9 10 11 12113114 15116117 18j19 20
Species
'tI ber ....

1112 1
3

41

51

1171

101

131

1 1_... 1
15

17t

2---1 -2 -2 -2 -1 -1 -1 -1

2 -1-1-1-1-1--1-1 1-2 -2 -11-1 -1 -1i-1 -2

2 21345 617 81i1 1 J1 - 11-t11-11 2

Note: A blank @pace in the table signifies a zero value for the
stoichiometric coefficient.
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Table 3

PARTIAL DATA SIMMARY FOR TU ZQUILIBRIUK-WATUR-TUMOMC CAL PROBLfi
C

Reaction • vlj
Number Species r U r2L r U J-1

1 0÷ 0 1 1 1

2 0+2 0 1 2 2

3 e3 0 1 3 3

4 b44 0 1 4 4

5 0+5 0 1 5 5

6 0+6 0 1 6 6

7 O+7  0 1 7 7

0+8 0 1 8 8

9 1+ 1 0 1 1

10 02 0 2 0 -1

11 0+ 0 2 1 0
02

12 H2 2 0 0 -1

13 H 2 0 1 0

14 H20 2 1 0 -2

15 01 1 1 0 -1

16 on 1 1 -1 -2

17 Ole 1 1 1 0

18 0 0 1 -1 -1

19 1 1 0 -1 -1

20 +2 0 2 2 120 02



100

Latter, Thomas-Fermil model

10

ii

Experimental data

0.1I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

v (cc/gm)

Fig.2-Experimental and Thomas-Femil Hugoniot curves for water



and improved by various investigators at Los Alamos.( 1 3' 1 4 ' 1 5 ) We

attempt here to capitalize on these improvements to obtain perhaps more

accurate thermodynamic relations than those reported for water in Refs.

11 and 12.t We also attempt to estimate the range of validity of re-

sults obtained by our version of the BKW equation.

tIn Ref 12, the BKW modifications of Ref. 15 are recomnended. As

a starting point, we will use the most recent BKW parameters of Ref.
14, which show better agreement with experimental Hugoniot data than
those of Ref. 15.

I

i
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II. THE BECKER-KISTIAKOWSKY-WILSON EQUATION

For Mo grams (n t mols) of a pure substance, the B3KW equation, with its

most recent modifications, takes the form

pV 1+xe (1)

g

Kk", (2)
V(T + O)a

where the parameters B, K, a, e, and k are constants. The total vol-

me, V, may also be expressed as V - M v whenever we wish to present

results in terms of specific volume, v.

The variable x in Eq. (2) bears a resemblance to a familiar ratio

in the theory of imperfect gases:

Covolumett of H mass of material
0

X Total volume of M mass of material
0

If the parameter 8 were not present (and it wasn't in the original form

of the equation), the temperature-dependence of x would be that achiev-

ed by molecules with a repulsive pair potential of exponent 3/a:

*(r) - r- 3  , where r is the internuclear distance between two inter-

acting molecules.

For a mixture of c species of composition n a (n 1 , ... , nc) (n 1 ,

where j - 1...c, represents the number of mols of the j species in

a mixture of mass M ), the covolume factor, k of Eq. (2) is replaced
0

by an average covolume factor

t The resolution of the constant in the numerator of Eq. (2) into
a product will become clearer when we discuss the form of the equation
for mixtures.

ttThe covolume of a gas is equal to 4 times the volume of molecules

treated as rigid spheres, and roughly represents the volume unavailable
to the centers of the molecules. The covolume factor (p. 10 and follow-
ing text) is an empirical constant that resembles the covolume.
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C
k - n nki,

i-i

where kI is the covolume factor of the Ith species.

Equations (1) and (3) form the starting point of our equilibrium

calculations:

c
K i nIk(

x - .(3)

V(T + 0)

The parameters K, 8, a, 0, and all of the covolume factors, k., are

regarded as empirical material constants to be determined by experi-

ments. These are usually detonation.experiments, performed with a

variety of explosives with different product compositions, where the

above parameters are chosen to best predict experimental curves of

detonation velocity versus loading density, and Chapman-Jouguet temp-

eratures and pressures.

The strongly empirical nature of the BKW equation has been the

principal source of a number of warnings(14,15) issued against its use

in an extended extrapolation of experimental results either to high

pressures and densities or to materials (such as, for example, 0+5 in

Table 1) that did not appear in the experiments used to choose the

parameters of the problem. However, the studies of Refs. 18, 19, 20,

and 21 provide little motivation to use more complicated equations of

state, more sophisticated intermolecular potentials, or more physically

plausible mixture theories for calculations in our high-density, high-

pressure region, since such methods have not led to results that were

clearly superior to those obtained via the BKW equation at experiment-

ally attainable pressures and densities. Molecular theories for equi-

*1For further information on this subject, we refer the reader to

Refs. 13, 14, 15, and 16. Chapman-Jouguet theory is discussed in Ref.
17. The use of detonation theory and detonation experiments to set
empirical constants in equations of state based on intermolecular po-
tentials are discussed in Refs. 18, 19, 20, and 21.
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librium calculations in mixtures below the Thomas-Fermi region are based

on the use of spherical, additive pair potentials to represent the forces

acting on a molecule. Such calculations are all semiempirical, for the

pair potentials on which they are based contain force constants, which

must be established by experiment for most materials. In addition, the

assuption of spherical, additive pair potentials becomes unreliable at

pressures as high as those contemplated in our calculations, even for

such normally well-behaved materials as the noble gases,(21,22,23) and

we are by no means dealing with well-behaved materials. Thus, the phys-

ical theories based on molecular models contain many of the undesirable

traits that plague the B3W equation. It appears that the region between

experimantal data and the Thomas-Ferai model cannot be treated in a. en-

tirely satisfactory manner, and that each of the current methods of an-

alysis, assumes more the aspect of an interpolation than a physical theo-

ry when applied to this region. At the same time however, extrapolations

of the BDX equation to infinite pressures, such as appear in Refs. 11

and 12, place considerably greater faith in the validity of this equa-

tion than it deserves. The approach taken here represents a compromise

between the two conflicting views and usages of the BW equation at ax-

treus pressures.

We tentatively accept the BKW equation as an interpolation formula

between 1 and 20 megabars. Its parameters are then adjusted so that

its pressure-volume Hugoniot curve joins the Thomas-Fermi Hugoniot at

about 20 megabars, and the experimental data at about one megabar. We

next test the resulting form of the B3W equation on isotherms and iso-

metrics to see how well our modifications reproduce known results at

high and low pressures. We then recomend use of the unmodified or

modified forms of the BKW relations only for those thermodynamic vari-

ables that show reasonable agreement with known results, and only over

the estimated ranges where agreement does occur. As we will show later,

the Hugoniot-matching conditions require treating certain BKW param-

eters, hitherto held constant, as functions of one or more thermody-

nanic coordinates.
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III. VARIABLE BKW PARAMETERS

To decide which of the parameters K, 6, a, e, and k should assume

the role of variables rather than constants, and what their functional

forms should be, we use the following three guidelines: (1) We will

seek simple working equations. (2) We wish to vary as few parameters

as possible and still achieve our previously stated objective of forcing

BKW results into high- and low-pressure results of other solutions or

data. The more terms we vary, the more we defeat our first goal of

maintaining simple forms for computation. (3) We prefer to vary those

parameters which lend themselves to some physical interpretation. In

this way we can more confidently predict the general consequences of

an assumed variation. A physical interpretation of the parameter usually

places reasonable bounds on the range of values which may be assumed

by that parameter. For instance, we know that the covolume factors

should always remain positive. Therefore, a range of K which includes

negative values would be unreasonable. It would, on the other hand,

be difficult physically to justify the prohibition of negative values

for the range of the parameters 6 and e for temperatures larger than e.
The individual terms ki are proportional to the molecular volume

of the ith component of the mixture. Each of these individual terms

could be varied, but there are twenty-three in all, and assuming an

independent variation of each would create computational difficulties

well beyond those that we would care to encounter. Besides, there is

little information available to us to decide how each species should

change relative to all of the others. The common factor, K, on the

other hand, can be varied without introducing too many subsequent dif-

ficulties into our computer programs, and can still be thought of as

yielding a physical effect. We can consider the molecules of the mix-

ture as becoming "softer" and "harder," respectively, with decreasing

and increasing K. The variation of K, rather than the individual molec-

ular constants ki, implies that the molecular volume of each species

grows or decreases proportionately, which, though not entirely accurate,

represents at least a plausible manner for molecules of a mixture to

change their size. The parameter 8 has little physical significance,
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except what can be gleaned from Eq. (1) and a knowledge of the fact

that x 2 0. We see from this equation that an increase in B represents

an increase in the compressibility factor, pV/RT, and thus a greater

departure from ideality (i.e., the ideal gas relation, pV - ir). Treat-

ing 8 as a variable would not severely complicate the forms of the equa-

tions, for it does not appear in the definition of x. The parameter a

appears in the BKW equation in a considerably mo-.- complicated way than

B or K. We therefore do not care to vary a if we can avoid it. Fin-

ally, the parameter e cannot be assigned any kind of physical interpre-

tation that we can think of, and in addition would have to vary strongly

at the higher temperatures to have any significant effect on the solu-

tions. We therefore hold 0 constant at its current value of 400'v..

On the basis of these remarks, we have elected to vary the parameters

K and 8 and to treat kit a, and 6 as constants.

There still remains the problem of choosing the independent vari-

ables for the functions defining K and B. The independent variables

of the entire equilibrium problem are temperature and volume. These

would appear to be the best choice of independent variables for K and B.

The residual internal energy and residual Helmholz free energy are ob-

tained by integrating the expressions T(ap/DT)v - p and p, respectively,

with volume (v) at constant temperature (T) and composition n.t This

integration is most efficiently carried out for the BKW equation by

replacing V by x as an independent variable via the differential re-

lat ion

dV - _ dx
V x T,1 - constant

The forms of the functions would therefore be subject of simpli-

fication if K and 8 were functions of x rather than V. In addition,

the value of x is a better index of the departure of the material from

ideality than V. Indeed, if 6 were not a function of T (and it will

not be in our final results), x would be uniquely related to the

tSee Ref. 1 for a discussion of these integrations.
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compressibility factor, pV/-. Therefore T and x appear suitable choices

for the independent variables.

Although we have narrowed the choice down to the two functions

K - c(xT), B = B(x,T),

these are still too general for the numerical study needed to establish

their approximate forms. Once again, in the name of convenience, we

limit ourselves to two simple possibilities:

B - S(T); 8 - K(T) (4a)

B - S(T); K - K(x). (4b)

The equilibrium relations for the pressure, internal energy, Helm-

holz free energy, chemical potentials, and equilibrium constants as

functions of temperature and specific volume will be presented in the
Fl next section for relations (4a) and (4b).
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IV. SUMMARY OF WORKING EQUATIONS

The thermodynamic equations developed in this section pertain to

a mixture composed of the twenty-three species appearing in Table 1,

which are in chemical, thermal, and mechanical equilibrium, and whose

parameters fall into one of the two following categories:

A: a, 8, ki a constant

0 - S(T), I - K(T);

B: a, 8, ki " constant

B - S(T), K - K(x).

Because the equations for Region II and the equations correspond-

ing to constants B and K are all special cases of the relations which

we will obtain, there is no need to discuss these cases separately.

The equations in terms of an arbitrary p-v-T relation are devel-

oped in Ref. 1. A summary of those results is given in Appendix A.

The working equations of category A are obtained by substituting

Eqs. (1) and (3) for pressure into the equations of Appendix A, using

a, e, ki a constant, 8 - B(T), K - K(T)

wherever these quantities occur in Eqs. (1) and (3).

Reduction of the equations to forms suitable for computation fol-

lows a pattern very close to that of the test problem in Ref. 1. Those

who are interested in pursuing the details should use the test problem

as a guide. We limit ourselves here to a presentation of the final

results, which appear in Appendix B.

The equations of category B follow a pattern of development en-

tirely similar to those of category A. For convenience, we have taken

K to be a function of x, which is defined by



rr

23
-1=

n ki

V(T + 0'

Requirements for the equivalence of x and x as choices of indepen-

dent variable for K follow from their relation to one another,

KR a x , (6)

The values of the variables K, x, and ; are all greater than zero.

Therefore, for each continuous functional dependence H(x) assigned to

K, there is a reciprocal one-to-one correspondence between x and ; via

the relation x/H(x) - x, provided the function x/H(x) is monotone for

positive values of x and H(x). The functions we will use,

K(X) - K-V, K,Y constants > 0,

satisfy these requirements on K(x).

The equations which are used for computations based on parameters

in category B appear in Appendix C.
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V. HUGOKIOT COMPUTATIONS, RECION I

ALL PARAMETERS TREATED AS CONSTANTS

Our parametric studies are performed on the p-v shock Hugoniot

centered at po W 10-6 mgabars, v° a 1 cm 3/ (V0 W H0 v0Cm), which

corresponds to ambient fresh watAr. There is no loss in the accuracy

of our results if we set p equal to zero. The Hugoniot relation

becomes

E(T, V, •) - p(T, V, n)(V 0 - V) . (7)

The internal energy function E(T, V. ) has been defined so that E° 0

0. This explains the absence of E in Eq. (7).

Our first Hugoniot parameter study covers Region I, and is based

entirely on constant parameters. For this particular case the equa-

tions of Appendix B and those of Appendix C are equivalent. The equa-

tions of Appendix B are most easily reduced to the present case. The

computer runs made with constant values of the parameters are used to

decide which of the four sets of covolume factors, ki, appearing in

Table 4 should be used.

We use Mader ,s(14) recomended values for K, 8, a, and 8 based on

detonation calculations using RDX as the explosive. They have the

values shown in set 1, Table 5.

We chose the parameters in Ref. 14 based on the explosive RDX

rather than TNT because our system contains no carbon (see Ref. 14).

The method of computations used is discussed briefly in Appendix D.

Computations have been carried out in Region I for all four sets of

covolume factors to determine which set comes closest to reproducing

the Thomas-Fermi Hugoniot at high pressures. The results are shown

in Fig. 3, along with the Hugoniot results of Ref. 12, using an older

tThe four sets of covolume factors in Table 4 are those of Ref.
12, with covolume factors for H2 , 02P and H2 0 changed to the values
recommended in Ref. 14.
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Table 4

COVOLUME FACTORS AND WEIGHTED SUMS OF COVOLUMEFACTORS
USED IN BKW PARAMETER STUDIES; REGION I

Set 1 Set 2 Set 3 Set 4J k i i
Species k ik k, k vji k k vjikj

Nu b rJ-1 J-1 J.1 J-1 :

1 80 - 20 80 - 20 120 - 30 120 - 30

2 65 - 35 65 - 35 98 - 52 98 - 52
3 54 - 46 54 - 46 80 - 70 80 - 70

4 45 - 55 45 - 55 67 - 83 67 - 83

5 38 - 62 38 - 62 57 - 93 57 - 93

6 0.3 -100 0.3 -100 0.5 -150 0.5 -150

7 0.3 -100 0.3 -100 0.4 -150 0.4 -150

8 0 -100 0 -100 0 -150 0 -150
9 0 - 20 0 - 40 0 - 30 0 - 60

10 350 150 350 150 350 50 350 50

11 255 55 255 55 255 - 45 255 - 45
12 180 140 180 100 180 120 180 60
13 50 10 100 20 50 - 10 100 - 20

14 250 110 250 70 250 40 250 - 20

15 200 80 200 60 200 20 200 - 10

16 230 110 230 90 230 50 230 20

17 170 50 170 30 170 -10 170 -40

18 115 15 115 15 173 23 173 23

19 25 5 50 10 38 8 75 15

20 240 40 240 40 240 -60 240 -60

21 20 40 30 60

22 100 100 150 150

23 0 0 0 0

All covolumes except those for species 10, 12, and 14 (H2 0, 02,
H 0 respectively) are from Ref. 12. Covolumes for species 10, 12, and
i4 are from Ref. 14.
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Fig.3-BKW Hugoniot curves, Region I. The four numbered curves correspond
to the first set of parameters (Table 6) and the four sets of

covolume factors (Table 4)
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set of BKW parameters. From Fig. 3 we see that aLL four solutions based

on the parameters of Ref. 14 and the (modified) covolume factors of Ref.

12 represent a considerable improvement at the lower pressures over the

solutions appearing in Ref. 12. However, none of the four p-v Hugoniots

so obtained match the Thomas-Fermi Hugoniot solutions at the higher pres-

sures. The leftmost Hugoniot curve (curve 1), based on the first column

of covolume factors appearing in Table 4, is closest to the Thomas-Fermi

Hugoniot. We therefore chose this set of covoltme factors for our sub-

sequent programs.

CONSTANT K. VARIABLE B

It is clear from Fig. 3 that our B3KW Hugoniot, curve (1), is too

steep at the high pressures. That is, for the portion of the curve in

the Thomas-Fermi region, the Hugoniot pressures corresponding to a given

specific volume are much higher than those predicted by the Thomas-Fermi

model. The material based on the BKW equation with constant parameters

appears, therefore, to be too hard. Our first attempts tc soften the

material were based on variations of B with temperature. If we attribute

the steepness of the Hugoniot curve to excessive departure of the BKW

equation from ideality, then it is evident from Eqs. (1) and (2) and the

condition x Z 0 that we want 8 to decrease as the Hugoniot pressures in-

crease. Since temperatures increase on the Hugoniot with increasing

pressures, we must construct functions S(T) that have the appropriate

value of 0.16 at a temperature of 5000eK, and that decrease monotonically

with temperature for temperatures greater than 5000eK.

Two functional forms meeting these conditions, which we used in

Hugoniot calculations, are

82 - 1 T

8(T) - 2+ 39 5000 40

(8)

82 - constant, 5000 S T S 200,000K ;
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(T)- 1 +IT- 5o\"1
\5000 a

(9)

a - constant, 5000 S T & 10 6hK,

where 8(T) =8(T)/.16 and T is measured in degrees Kelvin.

Equation (8) is a linear temperature relation for B between the

value of one at 5000*K to an arbitrary value B2 at a higher temperature,

arbitrarily chosen as 200,000*K. Hugoniot runs were made with ;2

taken as low as 0.1. The asymptotic approach of B to zero in Eq. (9),

T,* w, a - 0, can be hastened or retarded by appropriate choices of the

constant a. We have made Hugoniot calculations using Eq. (9) with val-

ues of a between 0.01 and 4.5. None of the p-v Hugoniot curves where

Eqs. (8) and (9) were used exhibited sufficient departures from. the

corresponding Hugoniot based on i -'l to account for the discrepancy

between Thomas-Fermi and BKW Hugoniot results. It thus appeared that

suitable alterations of curve (1), Fig. 3, could not be made by varying

the parameter 8 over a reasonable range of values in Region I1. This

observation has led us to set 8 equal to 0.16 in the remainder of our

investigations, and to focus our attention on constructing suitable

functional forms for the parameter K to achieve a smooth connection

between the experimental and Thomas-Fermi Hugoniots of Fig. 2.

x AS A FUNCTION OF TEMPERATURE

Another possibility for obtaining smaller fluid volumes at a given

pressure than those given by our constant-parameter Hugoniot is to allow

the covolume factors to decrease with increasing pressure on the Hugo-

niot. Although this effect does occur already in our model via the tem-

perature dependence of x, the covolume factors can be further decreased

by varying K, which appears as one of the products of the covolume fac-

tor terms in the definition of x.

Two possible variations of x have already been discussed, i.e.,
K(T) and c(x). We will first consider variations of K with temperature.

In order to make the material softer, K must decrease at the high-

er pressures. Since temperature increases with increasing Hugoniot
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pressures, we must construct functions of temperature for K, which give

the correct value of 10.91 at a temperature of 5000"K, and decrease (but

remain positive) for temperatures greater than 5000K. An additional

desirable condition would be to have the temperature derivative, K '(T),

vanish at T a 50000K. The desirability of this follows from the appear-

ance of K'(T) in the equations of Appendix B. This condition has been

relaxed because it had no significant effect on Hugoniot calculations

on or near 5000"K. Computations were made with two different functional

forms for c(T), both of which had nonzero values for c'(5000"K). The p-v

Hugoniot solutions for these cases were essentially identical with the

p-v Hugoniot based on constant K, for temperatures between 5000'K and

15,000"K.

Two functional forms of K(T) have been chosen. The normalized

forms of these equations are

A 2 -l 
T..T 

40T 9 + 5000 40

(10)

K 2 - constant, 5000 1 T s 200,0000K ;

IT - 5000)"K:(T)-a 1 + k _0_0 0A)

A, M - constants, 5000 S T :5 106 ,

where K(T) 2 K(T)/10.91, and T is again measured in degrees Kelvin.

Equation (10) has the same form as Eq. (8), and the parameter K2

may be interpreted in the same way; it is the value of K at a tempera-

ture of 200,000"K. The primary reason for using Eq. (10) for K(T) was

to ascertain whether reasonable variations in K could be made to yield

Hugoniot curves roughly in agreement with the Thomas-Fermi Hugoniot at

pressures of approximately 20 megabars. Results of calculations using

Eq. (10) are shown in Fig. 4. These results show that it is possible

to obtain fair agreement with the Thomas-Fermi Hugoniot at the lower

end of the Thomas-Fermi region, and that the value of the parameter K
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Fig.4-BKW Hugoniot curves, Region I; K(T) from Eq. (10).
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at 200,000"K must be reduced to approximately 40 percent of the value

at 5000"K. The linear relation for K(T) with K2 z 0.4 predicts negative

values for i at temperatures greater than approximately 330,000"K. This

undesirable feature of Eq. (10) is not shared by Eq. (11), which was

used for further computations.

The curves appearing in Fig. 5 were computed to obtain an estimate

of the correct values that should be used for the parameters m and A in

Eq. (11). The straight line in this figure represents the linear rela-

tion, Eq. (10), for K(T), with a value for K2 of .40. This particular

value was chosen because it gave the best agreement between the Thomas-

Fermi and BKW Hugoniots in Fig. 4. The remaining curves in Fig. 5 pro-

vide a sample of K(T) relations obtained from Eq. (11), using various

values fLr the parameters m and A. Approximate limits on the variation

of A for a given m were obtained by requiring all eligible curves to go

through a band, .40(1 - S1) : ;(200,000) < .40(l + S2), where the values

of S1 and S2 are arbitrarily 1/2 and 1, respectively. Using this method

and favoring those curves which lay nearer to the linear relation for

temperatures between 5000"K and 200,000"K, we have chosen a value of 1

for m, and a set of A's shown in Fig. 6.

Our final choice of parameters for K(T) is A - 15, m - 1, based on

results shown in Fig. 6. The functional form of K(T) which we therefore

accepted as final is

10.91 (12)

1 T - 5000
75,000

All remaining calculations, based on K(T) both on and off the Hugoniot

in Region I, will use this equation. Calculations off the Hugoniot

are discussed in a later section.

K AS A FUNCTION OF x

Before we can construct functions K(x) that decrease with increas-

ing Hugoniot pressures and temperatures, we must have some knowledge

of how x varies on the Hugoniot. No clear statement of x's variation
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Fig.6-BKW Hugoniot curves, Region I; "19(T) from Eq. (11), m 1.
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on the Hugoniot can be made directly from its definition,

23I nlki
S- i-i

V(T + 0)'

for while V decreases with increasing p, (T + 8)Q increases, and the

variations of the numerator are unpredictable without extensive calcu-

lation.

Some insight into x-s variation can be obtained from the results

of Hugoniot calculations shown in Table 5. These results are based on

constant values for all of the parameters (Mader's recommended values

for M, 8, K, 8, and the first set of covolume factors in Table 4). In

Table 5, x on the Hugoniot decreases monotonically toward zero with in-

creasing pressure (and temperature). Because these results are based

on constant K, they are only an indication of the behavior of x for

variable K. However, they are sufficient to establish reasonable trial

forms for K(x). Trial forms are therefore chosen to vanish at x - 0,

to give the correct value of K - 10.91 at T - 5000*K on the Hugoniot

(where x - 0.50566 from Table 6), and to increase monotonically with

x for ; 0.

Of the various forms tried, the following simple expression most

successfully matches Hugoniot curves to the Thomas-Fermi Hugoniot at

high pressures:

K(;) - (0 .50566  (13)

x 0 0, y - constant

where K(x) B K(x)/lO.91.

Calculations based on Eq. (13) used in association with the rela-

tions of Appendix C are presented in Fig. 7, which is a set of p-v

Hugoniot curves parameterized on y. From Fig. 7, we have chosen the
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Table 6

HUGONIOT CALCULATIONS BASED ON FIRST SET OF PARAMETERS, TABLE 5
COVOLUME FACTORS FROM SET 1 OF TABLE 4

4

T(°K) x 10.3 p(megabars)

5 0.887 0.50566

7 1.23 0.475

10 1.60 0.425

15 2.23 0.365

20 2.85 0.311

30 4.50 0.205

50 6.50 0.139

70 8.39 0.113

100 11.34 0.0909

150 17.15 0.0698

200 24.12 0.0574

300 40.15 0.0420

500 78.20 0. 0270

700 119.1 0.0196

1000 189.4 0.0132
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Fig.7-BKW Hugoniot curves, Region I; t (R) from Eq. (13).
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- value of y equal to 0.8. All subsequent calculatione using K(x) will

incorporate

) 10.91 (o.50566)O8 (14)

/

fi
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VI. RESULTS ON ISOTHERMS AND ISOMTRICS. REGION I

Table 5 contains a summary of the parameters used for the three

sets of computations [K - constant, K - K(T), K - K(;)] in the remainder

of this Report.

Pressure-volume-temperature calculations for a set of isotherms

spanning the low-pressure part of the Thomas-Fermi region are compared

to the corresponding Thomas-Fermi isotherms in Figs. 8, 9, and 10, where

each figure employs a different set of the parameters appearing in Table

5. Energy-volume-temperature comparisons are made in Figs. 11, 12, and

13 on the same set of isotherms that appear in the p-v-T diagram.

The p-v-T comparisons of Figs. 8, 9, and 10 are somewhat surprising,

because the solutions for the constant-K set of parameters, which gave

the worst p-v Hugoniot results, match the p-v isotherms of the Thomas-

Fermi model better than do the variable-K cases, whose pressures on iso-

therms are consistently lower than the corresponding Thomas-Fermi pres-

sures. However, the e-v-T comparisons shown in Figs. 11, 12, and 13

yield consistently low BKW energies on isotherms for all three sets of

parameters. Comparison of p-v-T and e-v-T results for each set of cal-

culations suggests that the variable-K cases might yield better p-v-e

results than the constant-K case, since such results are the temperature

eliminant of the p-v-T and e-v-T calculations in Figs. 8 to 10 and 11

to 13, respectively. This does indeed turn out to be true, as can be

seen in Figs. 14, 15, and 16. In these figures, the BKW p-e curves

corresponding to four isometrics spanning the low-pressure Thomas-Fermi

region come much closer to the corresponding Thomas-Fermi isometrics

for the variable-K calculations. This last set of results is consistent

with the p-v Hugoniot results presented earlier, for p-v Hugoniot cal-

culations use only the pressure-volume-energy form of the equation of

state. Thus, the variable K's chosen to fit known p-v Hugoniot results

were tailored to favor a correct form of the p-v-e relation.

Since our equation of state will be primarily used in hydrodynamic

calculations, which mainly use the p-v-e form, we base our final choice

of parameters on the comparisons appearing in Figs. 14 to 16. In these

figures, the c(T) and K(x) calculations yield essentially the same
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Fig.8-Thomos-Fermi and BKW p-v isotherms, Region I. BKW results
are based on i= 10.91.
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Fig.9-Thomas-.Fermi and BKW p-v isotherms, Region 1. BKW results
are based on iK(T) given by Eq. (12).
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Fig.10-Thomos-Fermi and BKW p-v isothermns, Region 1. 8KW results
are based on sc (i) given by Eq. (14).
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Fig.12-Thomas-Fermi and BKW e-v isotherms, Region I. BKW results
are based on K (T) given by Eq. (12).
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Fig. 13-Thomas-Ferrni and BKW e-v isotherms, Region 1. BKW results
are based on sc(ý) given by Eq. (14).
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are based on w (T) given by Eq. (12).
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result. Both predict pressures that are consistently higher, by approx-

imately 7 percent, than the Thomas-Fermi solution at the same energy

and volume.

We choose the K(T) parameters (set 2 of Table 5) to represent the

p-v-e results of this Report in Region I, since the K(T) calculations

on isotherms agreed a little better than the K(x) calculations with

Thomas-Fermi results.

Because of the generally poor performance of the variable-ic iso-

thermal calculations and the equally poor constant-K p-v-e (and Hugo-

niot) results, we will not present detailed p-v-T or even e-v-T results

in Regions I and II based on the BIG equation or any of its modifica-

tions considered here. Detailed pressure-volume-energy results are

presented later in Fig. 21.
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VII. HUGONIOT CALCULATIONS. REGION II

Hugoniot calculations with all three sets of parameters appearing

in Table 6 showed that at 5000"K and 7000*K there were insignificant

traces of all species other than H2 0. Thus, below 5000"K, the Hugoniot

calculations were based on pure water. This is not true however, for

p-v points off of the Hugoniot. Off of the Hugoniot, the six species

H, 0, H2 , 02, H20, and OH were assumed to exist in chemical equilibrium

in Region II. Another simplification occurring in Region II stems from

the fact that its pressure range, which runs from about 0.5 to 1 mega-

bar, approximately coincides with a large part of the range of pressures

over which the BKW parameters of Ref. 14 were established. Hugoniot

calculations were made using these parameters (set 1, Table 5, and the

ki of set 1, Table 4), in association with standard state data given at

100"K increments from 100"K to 6000*K.t The p-v Hugoniot curve obtained

from these calculations is placed on Fig. 17, which is a partial repro-

duction of Fig. 1, Ref. 14. The results of our Hugoniot calculations

can be seen to be in good agreement with those of Ref. 14 above approx-

imately .2 megabar, with minor discrepancies that can be attributed to

differences in standard state data and ambient temperatures at the foot

of the Hugoniot between our calculations and those of Ref. 14. Below

approximately .17 megabar the BKW equation predicts shock temperatures

lower than the ambient temperature of the unshocked material. This

renders comparisons between our results and those of Ref. 14 somewhat
meaningless below .17 megabar, since in this region the results of

either set of calculations represent physical nonsense.

Although the p-v Hugoniot results using the BKW method exhibit

fairly good agreement with experimental data, the p-T Hugoniot calcula-

tions lead to results that in our opinion do not bear even a casual re-

lation to the p-T Hugoniot data for water. This observation is based

on a comparison of the experimental and BKW p-T Hugoniot curves shown

in Fig. 18. The results of Fig. 18 place considerable doubt on the

t See Ref. 24 for standard state data below 6000'K.
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value of the temperature-dependent BIG equations for representing the

equilibrium properties of water near the Hugoniot at pressures above

.1 megabar. This conclusion is supported by the results of the follow-

"ing section.
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VIII. RESULTS ON ISOTHERMS AND ISOMETRICS, REGION II

In Region II it is difficult to obtain a good evaluation of BKW

results on isotherms and isometrics at pressures above .25 megabar and

for temperatures higher than a few thousand degrees Kelvin, since ref-

erence curves are difficult to obtain in these regions. The best that

we can do is to extrapolate the results of Rice and Walsh to higher

temperatures and pressures than were incorporated in their work.(4)

For the p-v isotherms, we use the results of Ref. 8 as reference curves.

These results, however, represent an extrapolation of one of the assump-

tions of Ref. 4, (3v/aT) a f(p), to temperatures as high as 0,000*K.P
No justification of this assumption appears in the text of Ref. 8. For

p-e comparisons on isometrics, we obtain reference curves to .450 mega-

bar by extrapolating the curve fit of Ref. 4 for the quantity (ah/av)p

&(p), to pressures of .450 megabar. In Ref. 4, this expression is ter-

minated at a maximum pressure of .250 megabar. The rather uncertain

value of these extrapolations leads us to make comparisons only in a
small neighborhood of the Hugoniot curve above .250 megabar, since the

extrapolations are more reliable near the Hugoniot than anywhere else.

In Region II as in Region I, the BKI equation exhibits a poor tem-

perature performarce, as is clearly borne out by Fig. 19. This figure

compares the BKW p-v-T solutions based on the first set of parameters

of Table 5 with the results of Ref. 8. These results, along with equal-

ly unflatteritg comparisons of the BKW e-v isotherms with reference

curves (not shown) has led us to conclude that in Region II as well as

in Region I, the BKW m'thod does not yield acceptable p-v-T and e-v-T

equations of state near the Hugoniot curve.

Pressure-energy isometrics are shown in Fig. 20 for both the ref-

erence and BKW systems. A comparison of the reference and BKW isomet-

rics of Fig. 20 has led us to reject the BKW p-v-e results at pressures

lower than approximately .3 megabar.

tReference isotherms and Isometrics hav,! also been obtained from

the more re:ent results of Ref. 25. Comparisons of the BKW curves of
Figs. 19 and 20 with these later results have not produced any changes
in the conclusions and recommendations of this Report.
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IX. SUMMARY OF RESULTS AND DISCUSSIC._

1. Our studies have shown that the unmodified forms of the BKW

equation are generally unsatisfactory near the Hugoniot. In particular,

the p-T Hugoniot curve predicted by the BKW method is completely in

error. However, results on p-v isotherms above 200,000 K suggest that

the unmodified form of the BKW p-v-T relation is satisfactory above

this temperature if the parameters of Ref. 13 are used.

2. Of the modifications attempted, only those that altered the

covolume factors of the mixture showed any appreciable tendency to

bring the p-v Hugoniot back into line with the known Thomas-Fermi re-

sults. Both of the trial forms for variable covolume factor [K(x) and

K(T)] produced satisfactory p-v Hugoniot results. In each case this

was accomplished by forcing the modified forms of the BKW equation to

lie closer to the ideal-gas equation of state than does the unmodified

form.

3. The modified BKW forms produced unsatisfactory p-v-T and e-v-T

results at temperatures as high as 700,000K, except in the ideal-gas

range. However, the modified forms (in particular the form where K

assumed a dependence upon temperature) produced reasonable p-v-e re- -_

sults above approximately 300 kilobars for the region lying between

the Hugonuot curve and the 10,000 megabar-adiabat.

4. The combined p-v-e results of Regions I and II are presented

in Fig. 21. Results have been altered slightly so that they smoothly

join the Thomas-Fermi solutions of Ref. 2, which also appear in Fig.

21. The dashed lines represent linear extrapolations of computed iso-

metrics (solid lines). The figure Also includes the Hugoniot curve

and the 10,000-megabar adiabat (the isentrope through the Hugoniot at

a pressure of 104 megabars). These curves represent the approximate

boundaries of the region required for nuclear burst calculations in

water. The 10,000-megabar adiabat 4as obtained by numerically inte- - -•

grating the relation de - -pdv, with the aid of the p-v-e results of

Fig. 2i, from the 10,000-megabar point on the Hugoniot.

See Ref. i for a discussion of the approximate range requir ments
for nuclear burst calculations.
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We regard the p-v-e results obtained here as somvhat uniatisfactory,

but perhaps as good as could reasonably be provided by the BI3 form of

the thermal equation of state. Any further improvement in the combined

p-v-T, e-v-T, and p-v-e relations will simply require a more satisfactory -"- -

point of departure (thermal equation of state, partition function, etc.) -

than is offered by tce BIK equation.

I -
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Appendix A

$OVARY OF OI0DYMAIC RELATIONS BASED ON TIM
TEDNAL (p,V,T) EQU.LIDRIUM EQUATIONS

In this msmary, the distinction between ideal gas and residual

contributions to the various quantities appearing is retained wherever

it is reasonable to do so. The pertinent equations are:

Sp-p(T, vn .) (A-I)

C C

£ - nif(T) - li(To)] + • niV(To) + 68317 - n T n. 0 (A-2)
i-I i- I

V - IT,' ', n) d, dt (A-3)

C c

A X P~i(T) + T n innft+A (A-4.)
i i i--

-z A - p(T, g.ii dC (A-5)

S E A (A-6)

Sli 21 31 3 (T) ni1 a IT 1 i 20 (A-7)ni Y 1 2 Y3 KPj



~ k.~.~p(T. C) dC(A-S)

20

Y1+ I rlin 1 -2 (A-9)

L-1

20

Y2+ I r 2 01, 1 (A-10)

i-i

20

j r Un -0 (A-11)

The following definitions apply Co the equations of this summary:j

T 298.16*KJ

p 0 1 atm

V - n WTp volume of n mole (M0 gm) of mixture in the
g standard stfite 0

-o th

90(T) molar enthalpy of the ith species in the standard state
Sat temperature T relative to the enthalpy of the refer-

ence materials H 2 1 0 2. and e in the standard state at
temperature T,

9(T )-enthalpy of formation of one mol, of the it species in
i 0 its standard state from the reference materials(02

H 2, e) in their standard staites at temperature T0

0 h

F oo(T) molar Gibbs free energy of the it species in its
standard state at temperature T

InK (T) cLr enThe I s
SJ-1 RT

th
V - stoichiometric cTfficient of the j component ap-

pearing in the i reaction
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U " mole of atomic hydrogen in M0 gm of mixture

Y2 " n22 smols of atomic oxygen in H gm of mixture
Y3 - n2 3 - mole of electrons in M gm of mixtur-

The standard state data for fifteen temperatures from 5000"1 to

1,000,000"K (Region I) are tabulated in Ref. 11. Most of these data

can also be found in Ref. 12. The standard state data in this region

are given at the following temperatures (in degrees Kelvin): 5000,

7000, 10,000, 15,000, 20,000, 30,000, 50,000, 70,000, 100,000, 150,000,

200,000, 300,000, 500,000, 700,000, 1,000,000.

These data have been used for all diatomic species and for H 20.

However, all standard state data for the monatomic species above

5000"K have been obtained from a partition-function program developed

by 1. Gilmore at Rand. These (unpublished) results have been incor-

porated because they represent more recent data, and yield a signifi-

cantly closer matching with the standard-state data of Ref. 24, which

is used for the lower temperatures.

Standard state data for Region II are taken from the JANAF thea-

mochemical tables.(24) The data are given for temperatures from 0

to 6000"K in 100-degree increments, plus data at 298"K.
Stoichiometric coefficients v i and rak appear in Tables 2 and

3, respectively.
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SUMMARY OF THMODYNAMIC RELATIONS BASED ON THE MODIFIEDaKW EQUATION WITH 0 -I(T), K a K(T)--

The working equations for Regions I and 11, based on the modified -.

BKW equation with variable parameters, O(T), x - x(T), are pre-

ented here. These results were obtained by placing into the equations -

of Appendix A the thermal equation of state [p - p(T, V, n)] shown be-

low, and carrying out the differentiation and integrations wherever

it was possible to do so. The equations are:

n RT
p.it [+ xeo(T)x] (B-1)

k (B-2)
V(T + 0)'

23

k - K(T) • k ni (B-3)
i-i

23

nl n" (B-4)

23 23 '"

E n ff[(T H (T + Y nift(T (B-5)
i i 0 i-i

+ 68317- n RT {+ n+9 K(T) "Se(T) (T)X

+2>TT) B.T)0(T) e
2 (T) I
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The etthalpy of formation of electrons, H23(To), is zero, and their

molar enthally difference is given by the relation

( T~ i (T - T)

r r -r
0  K - lJ 7 2 2 y3 3J 1 (16)

j { i,

(3-7)

23

++ Z-r inei(.2 (3-8)i

20

y 2 + Z r 2 ~ni " (3-9)"

i-120

+2 +(T n reOtnt v k S

20

Y3 + r3ini " 0 (1-1O)

i-I
- VnM0  

(B-1)

e - ElmI0
(B-12)
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See Appendix A for definition& of the symbols used in this summary of

equations. Values for the stoichiometric coefficient vi and ra, canii
be found in Tables 2 and 3. Table 3 also includes the sum

23

Jul -

The covolume factors k and the sums

23

2. ljikj - .

appear in Table 4. Sources for the necessary standard state data are

given in Appendix A.

!-i- .
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Appendix C

S••¥RY OW THEZRODYIWIIC RELATIONS BASED ON THE
MODIFIED BKW EQUATION WITH 0 - I(T), K a K(9)

The working equations for Regions I and II, based on the modified

BKW equation with variable parameters B - I(T), Ka K (;), are pre-

sented here. These results were obtained by placing into the equa-

tions of Appendix A the thermal equation of state (p - p(T. V, 0).

shown below, and carrying out the differentiations and integrations
wherever it was possible to do so. The equations are:

p - - [I + xeoT~x] (C-I)

x - ;K(;) (C-2)

(Cc-3)
V(T + 4)

2.3
S= k-in (C-4)

23

ng - n i (C-5)

23 23

E a nj[H--(T) H- ff(T 0  + n n-0 (T)

nT2

+ 68317 - n 9T + T &+- xel(T)x (C6)

-n 0 ((-6)
0
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"0j
The enthalpy of formation of electrons, Id2 3 (T 0 ), is xero, and

their molar enthalpy difference is given by the relation

H 0(T) R0( (
23)o) . R(T - •o)

= i v --jr 2j -r 3j

nj Y-Jyl Y2 Y3 j ! • J 20 (C-7)

23

23

w K () VN e-xp - ( Vij)i ()K) dý (C-8)
Pj p '- RT,)

n 23

i-I

20

Yl + rltnt - 2 (C-9)

i-l

20

Y2 + r221ni .1 
(C-10)

20

i-b20 r 3 LnL - (C-bl)

1-1

v- V/M (C-12)

e - E0Mo (C-13)
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"See Appendix A for definitions of the symbols used in this summary of

" equations. Values for the stoichiometric coefficients Vi, and r., can

be found in Tables 2 and 3. Table 3 also includes the sum

23

jml

The covolume factors k and the sums

tjki
jal

appear in Table 4. Sources for the necessary standard state data are

given in Appendix A.
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Appendix D

BRIEF OU7T'LINE OF THE COMPUTfATIONAL METHOD FOR
EQUILIBRIUM CALCULATIONS IN REGIONS T II AND 1

The Newton-Raphson iteration method is applied to the set of

five simultaneous nonlinear equations in the five variables, ,l' Y2 '

Y3 , Y4, Y5 . The equations are solved for these variables as functions

of volume and temperature. For the Hugoniot calculations, a sixth re-

lation is added to the set of equations and the volume Y6 is added

to the list of variables.

The five equations are fi W0, i - 1 ... 5, where the f are de- - -

fined by the following relations

20

f m Yl +2I rlini - 2

iL1

20

f2" Y2 +• r 2 1nil

20

f3 "Y3" r 3ini

20

f4 Y4 " Yl " Y2 -Y3 n nS -4

23imll

f 5 =Y5 K (T) k in i--

The Hugoniot relation is f6 0, where

6
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f6 2 o Y6 •"

y4 IT(l + xei )

Appendices A, B, and C contain definitions of symbols used in

these equations. In addition, the variables y4 , y5 , and Y6 have the -

following definitions.

g "5 -n total mols of mixture

Y5 a k - ,(T) (average covolwe factor of mixture]

Y6 - v - specific volume

Linear estimates of the above equations, which are used in the

iterative process, can be represented in the following form:

f y +Z(i) dy' k 0

where

k+l k kyj , yj ÷dyj
j i

i, J-l, 5.. ,5 for non-Hugoniot calculations -

i, J-l, ... ,6 for Hugoniot calculations

In these relations, the superscript k denotes the kth iterate.

For calculations on the Hugoniot, the initial guesses, yj, were taken

as the values given in Ref. 12. Initial guesses for y along an iso-

therm were taken from results of calculation of neighboring volume

and teeperature points.
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Pressure and energy results can be obtained directly after the

determination of the variables y , J-1, ... 35 or 6, at a given T and

v or T, respectively.

The accuracy criterion for convergence of the iterative process

is

i, k• ki f 10.5 !.,_•

jy

where max signifies the maxiium value overall J, at a given iteration

(k). This criterion also gives the result j

Sf2 < 10-8 i

This program is written in the MAP language and run on the

I3K 7040/44 system.

" .' .... . ...
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